国产清纯在线精品_老太婆性杂交毛片_日本黄色影院在线观看_一本大道香蕉高清视频1区_欧美肥婆另类杂交_亚洲欧美日韩成人网手机版_免费中文熟妇在线影片密芽_亚洲国产精品成人综合色在线看_18禁黄网站禁片无遮挡观看_了解最新香蕉午夜视频

首頁 產(chǎn)品展示>Perkins1204柴油發(fā)動機燃油濾清器

Perkins1204柴油發(fā)動機燃油濾清器

Perkins1204柴油發(fā)動機燃油濾清器供應(yīng)商,Perkins1204柴油發(fā)動機燃油濾清器技術(shù)價格規(guī)格咨詢服務(wù),Perkins1204柴油發(fā)動機燃油濾清器零配件供應(yīng),Perkins1204柴油發(fā)動機燃油濾清器售后服務(wù)中心,Perkins1204柴油發(fā)動機燃油濾清器,Perkins1204柴油發(fā)動機燃油濾清器詳細的技術(shù)參數(shù),
產(chǎn)品咨詢

詳細描述

項目   零配件號碼        新件號 描述  

    19     1      排泄栓塞         

    20     1      密封O型圈       

    21     1      密封O型圈

    項目   零配件號碼        新件號 描述  

    2      1      燃油過濾器座        

    3      5      栓塞         

    4      2      連接器       

    5   T410737    1   T410737    栓塞         

    5   T410730    1   T410730    螺旋         

    8   T417241    1   T417241    感應(yīng)傳感器       

    8   T410761    1   T417241    感應(yīng)傳感器       

    9   3636685    1   3636685    燃油過濾器體

    項目   零配件號碼        新件號 描述  

    2      1      燃油過濾器座        

    3   T411282    2   T411282    連接器       

    6   T417706    1   T417706    連接器       

    9   T410731    1   T410731    栓塞         

    12  T410737    1   T410737    栓塞         

    15  3611272    1   3611272    燃油過濾器組合

    項目   零配件號碼        新件號 描述  

    1   T417469    1   T417469    提升泵       

    1   T408708    1   T408708    提升泵裝備       

    10  2314 H003  3   2314 H003  螺旋         

    11  T412017    1   T412017    燃油過濾器

    項目   零配件號碼        新件號 描述  

    2      1      提升泵       

    3      1      托架         

    4   T408676    1   T408676    連接器       

    5   T409263    4   T409263    螺拴         

    6   T411381    1   T411381    密封O型圈       

    7   T408437    1   T408437    連接             

    項目   零配件號碼        新件號 描述  

    2      1      提升泵       

    3      1      托架         

    4   T408676    1   T408676    連接器       

    5   T409263    4   T409263    螺拴         

    6   T411381    1   T411381    密封O型圈       

    7   T408437    1   T408437    連接

    項目   零配件號碼        新件號 描述  

    1   T405865    1   T405865    燃油軌條         

    4   2314 J009  2   2314 J009  螺旋         

    5   T408573    1   T408573    管 - 高的壓力燃油       

    9   T408571    1   T408571    管 - 高的壓力燃油       

    13  2314 F006  2   2314 F006  螺旋         

    14  T410437    1   T410437    保護裝備            

    項目   零配件號碼        新件號 描述  

    2      1      燃油軌條         

    3   T408524    1   T408524    放泄閥

    項目   零配件號碼        新件號 描述  

    6   T408551    1   T408551    以管輸送 - 燃油 INJ 沒有 1 CYL        

    7   T408550    1   T408550    以管輸送 - 燃油 INJ 沒有 2 CYL        

    8   T411397    1   T411397    管夾  

    項目   零配件號碼        新件號 描述  

    10  T408585    1   T408585    以管輸送 - 燃油 INJ 沒有 3 CYL        

    11  T408559    1   T408559    以管輸送 - 燃油 INJ 沒有 4 CYL        

    12  T411397    1   T411397    管夾         

KENR9116-01

13

Troubleshooting Section

Duty Cycle  – Refer to “Pulse Width Modulation”.

Failure Mode Identifier (FMI)  – This identifier

indicates the type of failure that is associated with

the component. The FMI has been adopted from the

SAE practice of J1587 diagnostics. The FMI follows

the parameter identifier (PID) in the descriptions of

the fault code. The descriptions of the FMIs are in

the following list.

Electronic Engine Control  – The  electronic

engine control is a  complete electronic system.

The electronic engine control monitors the engine

operation under all conditions. The electronic engine

control also controls the engine operation under all

conditions.

0  – The data is valid but the data is above the normal

Electronic Control Module (ECM)  – The ECM

is the control computer of  the engine. The ECM

provides power to the electronics. The ECM monitors

data that is input from the sensors of the engine. The

ECM acts as a governor in order to control the speed

and the power of the engine.

operational range.

1  – The data is valid but the data is below the normal

operational range.

2  – The data is erratic, intermittent, or incorrect.

Electronic Service Tool  – The electronic service

tool allows a computer (PC) to communicate with the

ECM.

3  – The voltage is above normal or the voltage is

shorted high.

4  – The voltage is below normal or the voltage is

shorted low.

Engine Monitoring  – Engine Monitoring is the part

of the electronic engine control that  monitors the

sensors. Engine monitoring also warns the operator

of detected problems.

5  – The current is below normal or the circuit is open.

6  – The current is above normal or the  circuit is

grounded.

Engine Oil Pressure Sensor  – The engine  oil

pressure sensor measures engine oil pressure. The

sensor sends a signal to the ECM that is dependent

on the engine oil pressure.

7  – The mechanical system is  not responding

properly.

Engine Speed/Timing Sensor  – An  engine

speed/timing sensor is a  hall effect switch that

provides a digital signal  to the ECM. The ECM

interprets this signal as the crankshaft position and

the engine speed. Two sensors are used to provide

the speed and timing signals to the ECM. The primary

sensor is associated with the crankshaft  and the

secondary sensor is associated with the camshaft.

8  – There is an abnormal frequency, an abnormal

pulse width, or an abnormal time period.

9  – There has been an abnormal update.

10  – There is an abnormal rate of change.

11  – The failure mode is not identifiable.

12  – The device or the component is damaged.

13  – The device requires calibration.

Ether Injection  – Ether injection is a starting aid in

cold conditions. Glow plugs are used as a starting

aid when the ambient temperature is between 5° C

(41° F) and −25° C (−13° F). At a temperature that

is lower than −25° C (−13° F), the  glow plugs are

disabled and ether injection is used.

14  – There is a special instruction for the device.

15  – The signal from the device is high (least severe).

Event Code  – An event code may be activated

in order to indicate an abnormal engine operating

condition. These codes usually indicate a mechanical

problem instead of an electrical system problem.

16  – The signal from the device is high (moderate

severity).

17  – The signal from the device is low (least severe).

Exhaust Back Pressure Valve  – The exhaust back

pressure valve regulates the gas pressure  in the

exhaust system. The valve can restrict the flow of

exhaust gases in order to increase the exhaust back

pressure. An increase in exhaust back pressure will

increase the temperature of the exhaust gases. The

increase in temperature will improve the process that

burns off the soot in the CDPF.

18  – The signal from the device is low (moderate

severity).

19  – There is an error in the data from the device.

31  – The device has failed and the engine has shut

down.

This document is printed from SPI². Not for RESALE


 

14

KENR9116-01

Troubleshooting Section

Flash File  – This file is  software that is inside

the ECM. The  file contains all the instructions

(software) for the ECM and  the file contains the

performance maps for a specific engine. The file may

be reprogrammed through flash programming.

Harness  – The harness is the bundle  of wiring

(loom) that connects all components of the electronic

system.

Hertz (Hz)  – Hertz is the measure  of electrical

frequency in cycles per second.

Flash Programming  – Flash programming is the

method of programming or updating an ECM with

an electronic service tool over the data link instead

of replacing components.

High Pressure Fuel Pump  – This pump is a device

that supplies fuel under pressure  to the fuel rail

(high-pressure fuel rail).

FRC  – See “Fuel Ratio Control”.

High Pressure Fuel Rail  – See “Fuel Rail”.

Fuel Pump  – See “High Pressure Fuel Pump”.

Injector Trim Codes  – Injector trim codes are codes

that contain 30 characters. The codes are supplied

with new injectors. The code is  input through the

electronic service tool into the ECM. The injector trim

codes compensate for variances in manufacturing

of the electronic unit injector and for the life of  the

electronic unit injector.

Fuel Rail  – This item is sometimes referred to as the

High Pressure Fuel Rail. The fuel rail supplies fuel to

the electronic unit injectors. The high-pressure fuel

pump and the fuel rail pressure sensor work with the

ECM in order to maintain the desired fuel pressure

in the fuel rail.  This pressure is determined by

calibration of the engine in order to enable the engine

to meet emissions and performance requirements.

Intake Manifold Air Temperature Sensor  –  The

intake manifold air temperature sensor detects the

air temperature in the intake manifold. The  ECM

monitors the air temperature and other data in the

intake manifold in order to adjust injection timing and

other performance functions.

Fuel Rail Pressure Sensor  – The fuel rail pressure

sensor sends a signal to the ECM that is dependent

on the pressure of the fuel in the fuel rail.

Fuel Ratio Control (FRC)  – The FRC is a limit that

is based on the control of the ratio of the fuel to air.

The FRC is used for purposes of emission control.

When the ECM senses a higher  intake manifold

air pressure (more air into the cylinder),  the FRC

increases the FRC Limit (more fuel into the cylinder).

Intake Manifold Pressure Sensor  – The Intake

Manifold Pressure Sensor measures the pressure

in the intake manifold. The pressure in the  intake

manifold may be different to the pressure  outside

the engine (atmospheric pressure). The difference

in pressure may be caused  by an increase in air

pressure by a turbocharger.

Full Load Setting (FLS) – The FLS is the parameter

that represents the fuel system adjustment.  This

adjustment is made  at the factory in  order to

fine-tune the fuel system. This parameter must be

programmed.

Integrated Electronic Controls  – The engine is

designed with the electronic controls as a necessary

part of the system.  The engine will not operate

without the electronic controls.

Full Torque Setting  (FTS) –  The FTS is the

parameter that represents the adjustment for  the

engine torque. This adjustment is made at the factory

in order to fine-tune the fuel system. This adjustment

is made with the  FLS. This parameter must be

programmed.

J1939 CAN Data Link  – This data link is a  SAE

standard diagnostic communications data link that is

used to communicate between the ECM and other

electronic devices.

Logged Diagnostic Codes  – Logged diagnostic

codes are codes which are stored in the  memory.

These codes are an indicator of possible causes for

intermittent problems. Refer to the term “Diagnostic

Trouble Codes” for more information.

Glow Plug  – The glow plug is an optional starting aid

for cold conditions. One glow plug is installed in each

combustion chamber in order to improve the ability of

the engine to start. The ECM uses information from

the engine sensors to determine when the glow plug

relay must provide power to each glow plug. Each

of the glow plugs then provides a hot surface in the

combustion chamber in order to vaporize the mixture

of air and fuel. The vaporization improves ignition

during the compression stroke of the cylinder.

NOx Reduction System  – The NOx Reduction

System recycles a portion of the exhaust gases back

into the inlet air. The recirculation reduces the oxides

of nitrogen (NOx) in the exhaust gases. The recycled

exhaust gas passes through a cooler before being

introduced into the inlet air.

Glow Plug Relay  – The glow plug relay is controlled

by the ECM in order to provide high current to  the

glow plugs.

OEM  – OEM is an abbreviation for the  Original

Equipment Manufacturer.  The OEM is  the

manufacturer of the machine or the vehicle that uses

the engine.

This document is printed from SPI². Not for RESALE


 

KENR9116-01

15

Troubleshooting Section

Open Circuit  – An open circuit is a condition that is

caused by an open switch, or by an electrical wire

or a connection that is broken. When this condition

exists, the signal or the supply voltage can no longer

reach the intended destination.

Parameter  – A parameter is a value or a limit that is

programmable. A parameter helps determine specific

characteristics or behaviors of the engine.

Password  – A password is a group of  numeric

characters or a group of alphanumeric characters

that is designed to restrict access to parameters. The

electronic system requires correct passwords in order

to change some parameters (Factory Passwords).

Refer to Troubleshooting, “Factory Passwords” for

more information.

Personality Module  – See “Flash File”.

Power Cycling  – Power cycling refers to the action

of cycling the keyswitch from any position to the OFF

position, and to the START/RUN position.

g01858875

Illustration 7

Rated Fuel Limit  – The rated fuel limit is a limit that

is based on the power rating of the engine and on the

engine rpm. The Rated Fuel Limit enables the engine

power and torque outputs to conform to the power

and torque curves of a specific engine model. These

limits are in the flash file and these limits cannot be

changed.

Pressure Limiting Valve (PLV) – The PLV is a valve

in the fuel rail that prevents excessive pressure. The

PLV will reduce the pressure to a safe level that will

limit engine operation but the reduced pressure will

not stop the engine.

Primary Speed/Timing Sensor  – This sensor

determines the position of the  crankshaft during

engine operation. If  the primary speed/timing

sensor fails during engine operation, the secondary

speed/timing sensor is used to provide the signal.

Reference Voltage  – Reference voltage is  a

regulated voltage and a  steady voltage that is

supplied by the ECM to a  sensor. The reference

voltage is used by the sensor to generate a signal

voltage.

Pulse Width Modulation (PWM)  – The PWM is a

signal that consists of pulses that  are of variable

width. These pulses occur at fixed intervals. The ratio

of “TIME ON” versus “TIME OFF” can be varied. This

ratio is also referred to as a duty cycle.

Relay  – A relay is an electromechanical switch. A

flow of electricity in one circuit is used to control the

flow of electricity in another circuit. A small current or

voltage is applied to a relay in order to switch a much

larger current or voltage.

Secondary Speed/Timing Sensor  – This sensor

determines the position of the camshaft during engine

operation. If the primary speed/timing sensor fails

during engine operation, the secondary speed/timing

sensor is used to provide the signal.

Sensor  – A sensor is a  device that is used to

detect the current value of pressure or temperature,

or mechanical movement. The information that is

detected is converted into an electrical signal.

Short Circuit  – A short circuit is a condition that has

an electrical circuit that is inadvertently connected to

an undesirable point. An example of a short circuit

is a wire which rubs against  a vehicle frame and

this rubbing eventually wears off the wire insulation.

Electrical contact with the frame is made and results

in a short circuit.

This document is printed from SPI². Not for RESALE


 

16

KENR9116-01

Troubleshooting Section

Signal  – The signal is a voltage or a waveform that

is used in order to transmit information typically from

a sensor to the ECM.

Wastegate  – The wastegate is a  device in a

turbocharged engine that controls the  maximum

boost pressure that is provided to the inlet manifold.

Suction Control Valve (SCV) – The SCV is a control

device in the high-pressure fuel pump. The  valve

controls the pressure in the fuel rail by varying the

amount of fuel that enters the chambers in the pump.

Wastegate Regulator  – The wastegate regulator

controls the pressure in the  intake manifold to a

value that is determined by the ECM. The wastegate

regulator provides the interface between the ECM

and the mechanical system. The wastegate regulates

intake manifold pressure to the desired value that is

determined by the software.

Supply Voltage – The supply voltage is a continuous

voltage that is supplied to a component. The power

may be generated by the ECM or the power may be

battery voltage that is supplied by the engine wiring.

i04084033

Suspect Parameter Number (SPN)  – The SPN is a

J1939 number that identifies the specific component

of the electronic control system that has experienced

a diagnostic code.

Electronic Service Tools

Perkins electronic service tools are designed to help

the service technician:

System Configuration Parameters  –  System

configuration parameters are parameters that affect

emissions and/or operating characteristics of the

engine.

•  Retrieve diagnostic codes.

•  Diagnose electrical problems.

•  Read parameters.

Tattletale  – Certain parameters that affect the

operation of the engine  are stored in the ECM.

These parameters can be changed by use  of the

electronic service tool. The tattletale logs the number

of changes that have been made to the parameter.

The tattletale is stored in the ECM.

•  Program parameters.

•  Install injector trim codes.

Throttle Position  – The throttle position is  the

interpretation by the ECM of  the signal from the

throttle position sensor or the throttle switch.

Required Service Tools

Table 1

Throttle Position Sensor  – The throttle position

sensor is a sensor that is normally connected to an

accelerator pedal or a hand lever. This sensor sends

a signal to the ECM that is used to calculate desired

engine speed.

Required Service  Tools

Part Number

CH11155

Description

Crimp Tool (12−AWG TO 18−AWG)

Wire Removal Tool

2900A019

Throttle Switch  – The throttle switch sends a signal

to the ECM that is used to calculate desired engine

speed.

27610285

Removal Tool

-

Suitable Digital Multimeter

Top Center Position – The top center position refers

to the crankshaft position when the engine piston

position is at the highest point of travel. The engine

must be turned in the normal direction of rotation in

order to reach this point.

Two short jumper wires are needed  to check the

continuity of some wiring harness circuits by shorting

two adjacent terminals together in a connector. A

long extension wire may also be needed to check the

continuity of some wiring harness circuits.

Total Tattletale  – The total tattletale is the  total

number of changes to all the parameters  that are

stored in the ECM.

Optional Service Tools

Table 2 lists the optional service tools that  can be

used when the engine is serviced.

Wait To Start Lamp  – This lamp is included in the

cold starting aid circuit in order to indicate when the

wait to start period is active.  The lamp will go off

when the engine is ready to be started.  The glow

plugs may not have deactivated.

This document is printed from SPI². Not for RESALE


 

KENR9116-01

17

Troubleshooting Section

Table 2

Table 3

Part Number

U5MK1092

Description

Service Tools for  the Use of  the Electronic

Service Tool

Spoon Probe Kit(MULTIMETER)

Part

Description

-

or

-

Suitable Digital Pressure Indicator

or

Engine Pressure Group

Number

-(1)

Single Use Program License

-

-

-

(1)

Suitable Battery Load Tester

Data Subscription for All Engines

Suitable Temperature  Adapter

(MULTIMETER)

Communication Adapter (Electronic

Service Tool to the ECM interface)

27610251

27610164

28170107

2900A038

Bypass Harness As

Harness as

Adapter Cable As

(1)  Refer to Perkins Engine Company Limited.

Note: For more  information on the Electronic

Service Tool and the PC requirements, refer to the

documentation that accompanies the software for the

Electronic Service Tool.

Perkins Electronic Service Tool

The Perkins Electronic Service Tool can display the

following information:

Connecting the Electronic Service Tool

and the Communication Adapter II

•  Status of all pressure sensors and temperature

sensors

•  Programmable parameter settings

•  Active diagnostic codes and logged  diagnostic

codes

•  Logged events

•  Histograms

The Electronic Service Tool can also  be used to

perform the following functions:

•  Diagnostic tests

•  Sensor calibrations

•  Programming of flash files and injector trim codes

•  Parameter programming

•  Copy configuration function for ECM replacement

•  Data logging

•  Graphs (real time)

Table 3 lists the service tools  that are required in

order to use the Electronic Service Tool.

g01121866

Illustration 8

(1) Personal Computer (PC)

(2) Adapter Cable (Computer Serial Port)

(3) Communication Adapter II

(4) Adapter Cable Assembly

Note: Items (2),  (3) and (4)  are part of the

Communication Adapter II kit.

Use the following procedure in  order to connect

the Electronic Service Tool and the Communication

Adapter II.

This document is printed from SPI². Not for RESALE


 

18

KENR9116-01

Troubleshooting Section

1.  Turn the keyswitch to the OFF position.

Warning Lamp

2.  Connect cable (2) between the “COMPUTER”

end of communication adapter (3) and the RS232

serial port of PC (1).

Lamp check  – When the keyswitch is turned to ON,

the lamp will come on for 2 seconds. The lamp will

then go off unless there is an active warning.

Note: The Adapter Cable Assembly (4) is required to

connect to the USB port on computers that are not

equipped with an RS232 serial port.

Flashing  – The lamp will be  flashing when a

“warning” or a “warning and derate” is active. This

includes low oil pressure.

3.  Connect cable (4) between the “DATA LINK” end

of communication adapter (3) and the service tool

connector.

On  – The lamp will be on when the shutdown level

has been reached. The “Shutdown” lamp will also

be on.

4.  Place the keyswitch in the ON position.  If the

Electronic Service Tool and the communication

adapter do not communicate with the Electronic

Control Module (ECM), refer to the  diagnostic

procedure Troubleshooting, “Electronic Service

Tool DoesNot Communicate”.

Wait to Start Lamp

Lamp check  – When the keyswitch is turned to ON,

the lamp will come on for 2 seconds. The lamp will

then go off unless “Wait to Start” is active.

On  – The lamp is on during a “Wait to Start” period.

i03834091

Low Oil Pressure

Indicator Lamps

Lamp check  – When the keyswitch is turned to ON,

the lamp will come on for 2 seconds. The lamp will

then go off unless there is an active warning.

Indicator Lamps

On  – The lamp will come on when a low oil pressure

event is detected. The  “Warning” lamp and the

“Shutdown” lamp may also come on.

Four lamps are available as options. The “Shutdown”

lamp and the “Warning” lamp will normally be installed

in the application. Dedicated optional lamps for other

items may also be installed. The remaining optional

lamps are “Wait to start” and “Low oil pressure”.

Note: On a cold start, when the Electronic Control

Module (ECM) determines that it is necessary for the

glow plugs to be activated prior to starting, a lamp

output will indicate that the operator needs to “Wait

to Start”. It is possible that starting aids may be used

during the cranking of the engine. Starting aids may

be used if the engine has previously been started.

The “Wait to Start” lamp will not be active in  these

conditions.

The “Shutdown” lamp and the “Warning” lamp can

also be used to indicate a diagnostic code by use of

the “Flash Code” feature. The “Flash Code” feature

can be used to indicate all active diagnostic codes

and logged diagnostic codes.

Functions of the Lamps

Color of Lamps

Shutdown Lamp

Typically, the “Shutdown” lamp is colored red and the

“Warning” lamp is colored amber. The other lamps

are optional.

Lamp check  – When the keyswitch is turned to ON,

the lamp will come on for 2 seconds. The lamp will

then go off unless there is an active warning.

Flashing  – The lamp will be flashing when a derate

is active or when a derate  is present because of

an active diagnostic code. An example of an active

diagnostic code is “System Voltage High”.

On  – The lamp will be on when the shutdown level

in the engine protection strategy has been reached.

The “Warning” lamp will also be on.

This document is printed from SPI². Not for RESALE


 

KENR9116-01

19

Troubleshooting Section

Operation of the Indicator Lamps

Table 4

Warning

Lamp

(Alert

Shutdown

Lamp

(Action

Lamp State

Lamp Check

No Faults

Description of the Indication

Engine State

Lamp)

Lamp)

On

On

When the keyswitch is moved to the

ON position, the lamps come on for

a period of 2 seconds and the lamps

will then go off.

The keyswitch is in the ON position but

the engine has not yet been cranked.

Off

On

Off

Off

With the engine in operation, there

are no active warnings, diagnostic

codes or event codes.

The engine is operating with no detected

faults.

Active

Diagnostic

If the warning lamp comes on during

engine operation, this  indicates

that an active diagnostic code (an

electrical fault) is present.

The engine is operating normally but

there is one or  more faults with the

electronic management system for the

engine.

On

Flashing

Derate

(A derate  is

caused by

certain active

codes.)

If the warning lamp comes on and the   The engine is operating but there is one

shutdown lamp flashes during engine    or more active diagnostic codes that

operation, this indicates that an active   have initiated an engine derate.

diagnostic code (an electrical fault) is

present. The diagnostic is sufficiently

serious in order to cause an engine

derate.

Flashing

Off

Warning

(Warning only)     during operation of the  engine,

the lamp indicates  that one or

When the warning  lamp flashes

The engine is  operating normally.

However, there is one or more  of the

monitored engine parameters that are

outside of the range that is acceptable.

more of the warning values for  the

engine protection strategy has been

exceeded. However, the value has

not been exceeded to a level that will

cause a derate or a shutdown.

Flashing

Flashing

Off

Warning

(Warning only)     Diesel Particulate Filter (DPF).

There is a high soot loading  in the

The soot loading  in the DPF has

reached 100%. The engine  will be

derated. The lamp warns the operator

that the engine needs to be operated in

a mode that promotes regeneration.

Flashing

Derate

(Warning and

Derate)

If both  the warning lamp  and

shutdown lamp flash during operation    one or more of the monitored engine

of the engine, the lamps indicate that    parameters is outside of the acceptable

The engine is  operating. However,

one or more of  the values for the

range. The acceptable range has been

engine protection strategy have been    exceeded to a level which  requires a

exceeded beyond the level that will

cause an engine derate.

warning and an engine derate.

Flashing

On

On

On

Very high DPF     The soot loading in the DPF is high.

soot loading

The soot loading in the DPF has reached

120%. The engine must be operated in

a mode that promotes regeneration.

Engine

Shutdown

If both the warning  lamp and the

shutdown lamp come  on during

engine operation, this indicates one

of the following conditions.

The engine is either shutdown or  an

engine shutdown is imminent. One or

more monitored engine parameters

have exceeded the limit for an engine

shutdown. This pattern of lamps can be

caused by the detection of a  serious

active diagnostic code.

1. One or more  of the shutdown

values for the  engine protection

strategy has been exceeded.

2. A serious active diagnostic code

has been detected.

After a short  period of time, the

engine will shut down.

This document is printed from SPI². Not for RESALE


 

20

KENR9116-01

Troubleshooting Section

Flash Codes

The “Flash Code” feature is used to flash the code

of all active diagnostic codes and logged diagnostic

codes.

The sequence for the flash code is started by moving

the keyswitch to “Off” and then moving the keyswitch

to “On” twice within a period of three seconds. After

a delay of 2 seconds, the “Shutdown” lamp will flash

once for a period of half a second. This sequence

indicates the start of the active  fault codes. After

a further delay of 2 seconds,  the “Warning” lamp

will flash repeatedly in order to indicate the active

diagnostic codes. Each flash will be  on for half a

second and off for 300 milliseconds. The “Warning”

lamp will remain off for 2 seconds between each digit

of a code. If there is more than one active diagnostic

code, the “Shutdown” lamp will go off for 2 seconds.

The lamp will then come on  for a period of half a

second. The “Warning” lamp will go off for a period of

2 seconds before starting the next code. If there are

no active diagnostic codes, the “Warning” lamp will

flash the code “551”. Refer to Troubleshooting Guide,

“No Diagnostic Code Detected”.

As an example, an active diagnostic code of “21” is

indicated by the “Warning” lamp coming on for 500

ms, then off for 300 ms, then on for 500 ms, then off

for 2000 ms, then on for 500 ms and then off.

g01779334

Illustration 9

Timing of the flash  codes

After all of the active diagnostic codes have  been

displayed, the “Shutdown” lamp will  go off for 2

seconds. The “Shutdown” lamp will flash  twice in

order to indicate the start of the sequence that will

display the logged diagnostic codes. The process for

flashing logged diagnostic codes is identical to the

process for flashing active diagnostic codes.

Note: If there are no logged codes then the  “551”

code should be flashed again.

This document is printed from SPI². Not for RESALE


 

KENR9116-01

21

Troubleshooting Section

After all of the  codes have been displayed, the

“Shutdown” lamp will  flash 3 times in order  to

indicate that there are no further codes. Cycling the

keyswitch twice within a period of  3 seconds will

start the process again. All codes will be displayed in

ascending numerical order.

Note: If an ECM is to be used as a test ECM, “Test

ECM Mode” must be selected  on the electronic

service tool before the  engine serial number is

entered.

Use the electronic service tool to read the parameters

in the suspect ECM.  Record the parameters in

the suspect ECM. Install the flash file into the new

ECM. After the ECM is installed on the engine, the

parameters must be programmed into the new ECM.

Refer to the Troubleshooting Guide, “Diagnostic

Code Cross Reference” for the diagnostic code that

relates to the flash code.

Note: Flash codes are always sent  in ascending

numerical order.

Note: When a new ECM is not available, an ECM

can be used from an engine that is not  in service.

The ECM must  have the same serial number

suffix. Ensure that the replacement ECM and  the

part number for the flash  file match the suspect

ECM. Be sure to record the  parameters from the

replacement ECM. Use the “Copy Configuration ECM

Replacement” function in the electronic service tool.

i04319696

Replacing the ECM

NOTICE

If the flash file and engine application are not matched,

engine damage may result.

NOTICE

Care must be taken to ensure that fluids are contained

during performance of inspection, maintenance, test-

ing, adjusting, and repair of the product. Be prepared

to  collect  the  fluid  with  suitable containers  before

opening any compartment or disassembling any com-

ponent containing fluids.

Perform the following procedure in order to replace

the ECM.

1.  Connect the electronic service  tool to the

diagnostic connector.

Dispose of all fluids according to local regulations and

mandates.

2.  Use the “Copy Configuration ECM Replacement”

function from the electronic service tool.  If the

process is successful, proceed to Step 4. If the

“Copy Configuration” failed, proceed to Step 3.

NOTICE

Keep all parts clean from contaminants.

Contaminants may cause  rapid wear and  shortened

component life.

Note: Record any Logged Faults and Events for your

records.

The engine is equipped with an Electronic Control

Module (ECM). The ECM contains no moving parts.

Follow the troubleshooting procedures in this manual

in order to be sure that replacing the ECM will correct

the fault. Verify that the suspect ECM is the cause

of the fault.

3.  Record the following parameters:

Record all  of the parameters  on the

“Configuration” screen.

Record all of the parameters on the “Throttle

Configuration” screen.

Note: Ensure that the  ECM is receiving power

and that the ECM  is properly grounded before

replacement of the ECM is attempted. Refer to the

schematic diagram.

Record all of the parameters  on the “Mode

Configuration” screen.

•  Record the serial numbers of the electronic unit

injectors. The injector serial numbers are shown

on the “Injector Trim Calibration” screen.

A test ECM can be used in order to determine if the

ECM on the engine is faulty. Install  a test ECM in

place of the suspect ECM. Install the flash file with

the correct part number into the test ECM. Program

the parameters for the test ECM. The parameters

must match the parameters in the  suspect ECM.

Refer to the following test steps  for details. If the

test ECM resolves the fault, reconnect the suspect

ECM. Verify that the fault returns. If the fault returns,

replace the ECM.

Note: If the  parameters cannot be read,  the

parameters must be obtained elsewhere.  Some

parameters are stamped on the engine information

plate, but most parameters must be obtained from

the PTMI data on the Perkins web site.

4.  Remove power from the ECM.

This document is printed from SPI². Not for RESALE


 

22

KENR9116-01

Troubleshooting Section

5.  Remove the ECM. Refer to Disassembly and

Assembly, “Electronic Control Module - Remove

and Install”.

Diagnostic Trouble Code  – When a fault in the

electronic system is detected, the ECM generates a

diagnostic trouble code. The diagnostic trouble code

indicates the specific fault in the circuitry.

6.  Install the replacement ECM. Refer to Disassembly

and Assembly, “Electronic Control  Module -

Remove and Install”.

Diagnostic codes can have two different states:

•  Active

7.  If the replacement ECM is to be used as a test

ECM, select “Test ECM Mode” on the electronic

service tool.

•  Logged

Active Code  – An active diagnostic code indicates

that an active fault has been detected by the control

system. Active codes require immediate attention.

Always service active codes prior to servicing logged

codes.

8.  Download the flash file.

a.  Connect the electronic service tool to  the

diagnostic connector.

b. Select “WinFlash” from  the “Utilities” menu of

the electronic service tool.

Logged Code  – Every generated code is stored

in the permanent memory of the ECM. The codes

are logged for 100 operating hours unless a code is

cleared by use of the electronic service tool.

c.  Select the downloaded flash file.

9.  If necessary, use the electronic service tool to clear

the rating interlock. To clear the rating interlock,

enter the factory password when the electronic

service tool is first connected. Activating the Test

ECM mode will also clear the rating interlock.

Logged codes may not  indicate that a repair is

needed. The fault may have been temporary. The

fault may have been resolved  since the logging

of the code. If the  system is powered, an active

diagnostic trouble code may be generated whenever

a component is disconnected. When the component

is reconnected, the code is no longer active. Logged

codes may be useful to help troubleshoot intermittent

faults. Logged codes can also be used to review the

performance of the engine and the electronic system.

10. Use the electronic service tool to program the

parameters. Perform the following procedure.

a.  If the “Copy Configuration” procedure was

successful, use the “Copy Configuration, ECM

Replacement” function to load the configuration

file into the ECM.

i04215569

Sensors and  Electrical

Connectors

Note: During the  following procedure, factory

passwords may be required.

b. If the  “Copy Configuration” procedure failed,

configure the parameters individually.  The

parameters should match the parameters from

step 3.

The Electronic Control Module (ECM)  and most

of the engine sensors are located on  the left side

of the engine. For the 1204E-E44 engine, refer to

Illustration 10. For the remaining sensors that are

attached to the 1204E-E44 engine, refer to Illustration

12. For the 1206E-E66 engine, refer to Illustration 14

. For the remaining sensors that are attached to the

1206E-E66 engine, refer to Illustration 16. For the

sensors and components on the Clean Emissions

Module (CEM), refer to Illustration 18.

Perform the “Fuel System Verification Test”.

11. Check for logged diagnostic codes. Factory

passwords are required to clear logged events.

i03951470

Self-Diagnostics

Note: In the following illustrations, some components

have been removed in order to improve visibility.

The Electronic Control Module (ECM) can detect

faults in the electronic  system and with engine

operation. A self-diagnostic check is also performed

whenever power is applied to the ECM.

When a fault is detected, a diagnostic trouble code

is generated. This code conforms to the SAE J1939

standard. An alarm may also be generated.

This document is printed from SPI². Not for RESALE


 

KENR9116-01

23

Troubleshooting Section

Typical 1204E-E44 Engine

g02479176

Illustration 10

Sensor locations on the left side  of a typical 1204E-E44 engine

(1) Coolant temperature sensor

(2) Intake manifold air temperature sensor

(3) Intake manifold pressure sensor

(4) Fuel rail pressure sensor

(5) Water-in-fuel switch

(8) Fuel temperature sensor

(6) Electronic Control Module (ECM)

(7) Suction  control valve  for the

high-pressure fuel pump

(9) Barometric pressure sensor

(10) Primary speed/timing sensor

(11) Oil pressure sensor

This document is printed from SPI². Not for RESALE


 

24

KENR9116-01

Troubleshooting Section

g02479258

Illustration 11

Close up views of sensor locations on the  left side of a typical 1204E-E44 engine

(1) Coolant temperature sensor

(2) Intake manifold air temperature sensor

(3) Intake manifold pressure sensor

(4) Fuel rail pressure sensor

(5) Water-in-fuel switch

(8) Fuel temperature sensor

(6) Electronic Control Module (ECM)

(7) Suction  control valve  for the

high-pressure fuel pump

(9) Barometric pressure sensor

(10) Primary speed/timing sensor

(11) Oil pressure sensor

This document is printed from SPI². Not for RESALE


 

KENR9116-01

25

Troubleshooting Section

g02481176

Illustration 12

Sensor locations on the right side and the  top of a typical 1204E-E44 engine

(12) NRS outlet pressure sensor

(13) NRS inlet pressure sensor

(14) NRS valve

(15) Nox  Reduction System (NRS)

temperature sensor

(16) Wastegate regulator

(17) Secondary speed/timing sensor

(18) Exhaust back  pressure valve (not

illustrated)

This document is printed from SPI². Not for RESALE


 

26

KENR9116-01

Troubleshooting Section

g02481197

Illustration 13

Close up views of sensor locations on  the top of a typical 1204E-E44 engine

(12) NRS outlet pressure sensor

(13) NRS inlet pressure sensor

(14) NRS valve

(15) Nox  Reduction System (NRS)

temperature sensor (not illustrated)

(16) Wastegate regulator

(17) Secondary speed/timing sensor (not

illustrated)

(18) Exhaust back pressure valve

This document is printed from SPI². Not for RESALE


 

KENR9116-01

27

Troubleshooting Section

1206E-E66 Engine

g02481236

Illustration 14

Sensor locations on the left side  of a typical 1206E-E66 engine

(1) Fuel rail pressure sensor

(5) Suction  control valve  for the

high-pressure fuel pump

(6) Electronic Control Module (ECM)

(7) Fuel temperature sensor

(8) Barometric pressure sensor (not shown)

(9) Water-in-fuel switch

(10) Primary speed/timing sensor

(11) Oil pressure sensor

(2) Intake manifold pressure sensor

(3) Coolant temperature sensor

(4) Intake manifold air temperature sensor

This document is printed from SPI². Not for RESALE


 

28

KENR9116-01

Troubleshooting Section

g02481796

Illustration 15

Close up views of sensor locations on the  left side of a typical 1206E-E66 engine

(1) Fuel rail pressure sensor

(5) Suction  control valve  for the

high-pressure fuel pump

(6) Electronic Control Module (ECM)

(7) Fuel temperature sensor

(8) Barometric pressure sensor

(9) Water-in-fuel switch

(10) Primary speed/timing sensor

(11) Oil pressure sensor

(2) Intake manifold pressure sensor

(3) Coolant temperature sensor

(4) Intake manifold air temperature sensor

This document is printed from SPI². Not for RESALE


 

KENR9116-01

29

Troubleshooting Section

g02483578

Illustration 16

Sensor locations on the right side and the  top of a typical 1206E-E66 engine

(12) NRS outlet pressure sensor

(13) Wastegate regulator

(14) NRS valve

(15) NRS inlet pressure sensor

(16) Inlet temperature sensor for the  NOx

Reduction System (NRS)

(17) Secondary speed/timing sensor

(18) Exhaust back pressure valve

This document is printed from SPI². Not for RESALE

 

免費熱線
400-082-9096?
整機銷售
0731-84424871? 18374999699
售后維修
0731-84424872? 15580888444
配件銷售
0731-84424873? 18274802060
手機端
微信公眾號